Extending the Range of Error Estimates for Radial Approximation in Euclidean Space and on Spheres
نویسندگان
چکیده
We adapt Schaback’s error doubling trick [13] to give error estimates for radial interpolation of functions with smoothness lying (in some sense) between that of the usual native space and the subspace with double the smoothness. We do this for both bounded subsets of IR and spheres. As a step on the way to our ultimate goal we also show convergence of pseudo-derivatives of the interpolation error.
منابع مشابه
Radial basis interpolation on homogeneous manifolds: convergence rates
Pointwise error estimates for approximation on compact homogeneous manifolds using radial kernels are presented. For a C positive definite kernel κ the pointwise error at x for interpolation by translates of κ goes to 0 like ρ, where ρ is the density of the interpolating set on a fixed neighbourhood of x. Tangent space techniques are used to lift the problem from the manifold to Euclidean space...
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملEfficient Approximation Algorithms for Point-set Diameter in Higher Dimensions
We study the problem of computing the diameter of a set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...
متن کاملOptimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملExact Radial Free Vibration Frequencies of Power-Law Graded Spheres
This study concentrates on the free pure radial vibrations of hollow spheres made of hypothetically functionally simple power rule graded materials having identical inhomogeneity indexes for both Young’s modulus and the density in an analytical manner. After offering the exact elements of the free vibration coefficient matrices for free-free, free-fixed, and fixed-fixed restraints, a parametric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Math. Analysis
دوره 39 شماره
صفحات -
تاریخ انتشار 2007